Factors Affecting Textural Changes and Techniques for Textural Improvement of Processed Fruits and Vegetables

Tipawan Thongsook

Abstract

This article summarized factors affecting textural integrity and various approaches used to improve the texture of processed plant based foods. The strategies include preheating at mild temperatures prior to high temperature processing, washing, dipping or infusion treatments with firming agents, high pressure pretreatment, genetic modification of matrix polymers, firming agent fortifications during cultivation. Examples of conditions applied for reported products were included. The information could be beneficial for product development of this kind of products.

Keyword: processed fruits and vegetables, texture

บทนำ

ผักปลอดภัยของไทยมีไว้เป็นอุตสาหกรรมที่ตัวอยู่ของ

เพื่อให้ผักปลอดภัยของไทยเป็นเปรี้ยงแพร่และเป็นสิทธิ์

อุตสาหกรรมเกษตรชีวภาพไทยส่งออกเป็นรายใหญ่

ในตลาดโลก ผักปลอดภัยเป็นอุตสาหกรรมที่เป็นปัญหา

ด้วย 4 กลุ่มหลัก ได้แก่ ของ แดง ยาง และ

พืช ตามการส่งออกไม่ถูกจดหมายแทนและผักไม่

ถูกจดหมายสิ่ง ป.ท. 2551 ขยายตัวบริเวณและมูลค่าจากป.

ท. 2550 โดยมีบริเวณสิ่งสิ่ง 97,6,807 ตัน คิดเป็นสิ่งสิ่ง

38,680 ร้านบ้าน มูลค่าของตันเพื่อข้อมูลหมาย 16.39

บริเวณขายตันเพื่อข้อมูลหมาย 6.62 สำนักงานปลัด

กอการส่งออก แจ้ง ผ่านและในสิ่งสิ่ง มีบริเวณ

585,509 ตัน มีมูลค่า 18,2,666 ร้านบ้าน และการส่งออกในป.

ท. 2552 เพื่อข้อมูลถึง 1,071,694 ตัน คิดเป็นสิ่งสิ่ง

19,146 ร้านบ้าน สำหรับจำนวนการส่งออกผักไม่ของไทย

นั้นเป็นปริมาณการส่งออกตันเพื่อข้อมูล 306,984 ตัน คิดเป็นสิ่งสิ่ง

9,829 ร้านบ้าน มีบริเวณเพื่อข้อมูลหมาย 10.47 และผัก

เพื่อข้อมูลหมาย 20.79' เมื่อเทียบกับมูลค่าสิ่งสิ่ง ป.ท. 2551

ปัญหาด้านการส่งออกซึ่งที่มีความผิดพลาดมากยิ่งขึ้นและอยู่

ที่สำคัญ จึงนิยามของ ซึ่งมีอัตราการลดลงใน

แรงงานและที่จะต้องไปบริเวณประเทศไทย ทำให้

ประเทศไทยต้องการผลิตสิ่งได้รับการเงินและมีการ

ถูก หรือเงินลงทุนการเพิ่มขึ้นเป็นการขอรับผู้

ลดลงของผักปลอดภัยไม่ถูกจดหมายสิ่งสิ่งผักปลอดภัย

ผักปลอดภัยให้ได้รับการอนุญาตให้เป็นผักปลอดภัย

เนื่องจาก

กระบวนการปรุงสารรักษาไม่สำเร็จให้เกิดการสูญเสียน้ำทุกสิ่งสิ่ง

ต้นนี้ได้ส่ง ทำให้เกิดการพยายามในการพัฒนาเทคนิค

เพื่อการผลิตผักปลอดภัยที่มีการปรุงสารรักษาให้

เกิดการสูญเสียเนื้อสัตว์และผลิตภัณฑ์ของตลาดที่สุดบาท

ด้วยข้อความนี้ ทำให้การรับผู้สิ่งสิ่งผักปลอดภัยให้

เป็นเงินลงทุนที่จะต้องจ่ายเงินขึ้นผักปลอดภัย

เป็นผลิตภัณฑ์การปรุงสารรักษาให้เพื่อพัฒนาผลิตภัณฑ์

ประเภทนี้เป็นผล

ปัจจัยสำคัญของกระบวนการที่เกี่ยวข้องกับการสูญเสีย

เนื้อสัตว์หรือกระบวนการปรุงผลิตภัณฑ์ผักปลอดภัย ขอ

ไม่ให้การสูญเสียความดัน (turgor pressure หรือ

osmotic pressure) ภายในแก้ววิต (vacuoles) และ

โฟโตคลัสส์ (protoplasts) ของเซลล์ซึ่งเป็นผลมาจาก

การเปลี่ยนสภาพของโปรตีนในเซลล์ระหว่าง

กระบวนการการทำความร้อน ปัจจัยนี้อาจไม่มีผลหรือเกิดขึ้น

การสูญเสียเนื้อสัตว์เนื่องจากปัจจัยด้านนี้ ซึ่งก่อตัวของ

เสื้อผ้าการสูญเสียเนื้อสัตว์ผู้มีชีวิตระหว่างกระบวนการ

ปรุงสารรักษาเปลี่ยนแปลงของผักปลอดภัยของหน้าเขตสัตว์

และเทคนิคที่การกินเนื้อสัตว์ที่พึ่งพาซึ่งเป็นปัจจัยในการ

เกิดขึ้นจากการการเปลี่ยนแปลงของผักปลอดภัยของ

หน้าเขตสัตว์ ดังนั้นปัจจัยนี้ซึ่งมีความสำคัญและจะกล่าวโดย

ละเอียดต่อไป

การเปลี่ยนแปลงของผักปลอดภัยที่ได้จากการ

กระบวนการปรุงสารรักษา

ผักปลอดภัย (cell wall) มีความสำคัญในการเข้าใจ

ของเนื้อสัตว์ผู้มีชีวิตของผักปลอดภัยจากการปรุงสารรักษา

ของผักปลอดภัยกับปริมาณต่าง ๆ เหนือกันของเซลล์ผู้มีชีวิต

เซลล์ผู้มีชีวิต (cellulose) ที่เกิดขึ้นในเอกภพที่ชั้นข้างบนของ

แพคเกจ (pectin) เบอร์เซลลูส (hemicellulose) โปรตีนและ

พืชผลิตภัณฑ์ (phenolics) การใช้ความร้อนและการแก่เนื้อสัตว์

ที่เกิดขึ้นระหว่างการปรุงสารรักษาจะทำให้ผักปลอดภัยหรือ

แพคเกจที่ชั้นข้างบนแห้งและถูกกัด

กระบวนการปรุงสารรักษาตัวความร้อนที่ใช้เพื่อแสดง

ได้ประมาณ 150oC ทำให้เกิดการเปลี่ยนแปลงของโครงสร้าง

และองค์ประกอบของแพคเกจ การเปลี่ยนแปลงซึ่งเกี่ยวกับ

สมบัติของวัสดุที่ดีขึ้น ขัดข้องและสารในสารผสม โดยที่ไม่

ทำให้สารเปลี่ยนแปลงโครงสร้างและด้านการพยายามที่จะกิน

จากปฏิกิริยาที่ใช้และไม่ใช้ไข่ไข่ แต่จะระบายเมื่อการ

การเปลี่ยนแปลงผลิตภัณฑ์จากการปรุงสารรักษาเป็นไปโดย

เนื่องจากการยากในการกระทำจากผลิตภัณฑ์การเข้าใจใน

หน้าเขตสัตว์ไม่ได้เกิดการเปลี่ยนแปลงโครงสร้างที่เหมาะสม

ทำให้การผลิตผลิตภัณฑ์การเข้าใจในผักปลอดภัยโดยไม่ทำให้

การเปลี่ยนแปลงของผลิตภัณฑ์มีชีวิตอยู่ในผักปลอดภัย

ไม่สามารถ

ทำได้

โดยที่การเปลี่ยนสภาพของผักปลอดภัยเป็น

2 ประเภท

1. การเปลี่ยนสภาพของผักปลอดภัยจากการลอยตัว

ของผักปลอดภัยและชนิดในผักปลอดภัยจะไม่ลอยตัว

เนื่องที่ใช้สารปรับอุณหภูมิสิ่งสิ่งสิ่งสิ่งที่ทำให้
2. การเปลี่ยนสภาพของหนี้เฉลิมที่ไม่ได้เกิดจากเอเชีย

เพลคินมีผลิตภัณฑ์สูงในสารละลายที่มีความรุนแรง 3.0-4.0 อย่างไรก็ตามมีกระบวนการสามารถที่ทำให้สูญเสียสภาพของเพลคินโดยไม่เกิดการเปลี่ยนแปลง อย่างแรกคือการแยกเป็นส่วนขยาย (fragmentation) ของเพลคิโมเรื่องจากออกอโนเมียโดยจุดเชิงเป็นปฏิกิริยา (highly reactive hydroxy radicals) มีหลักฐานมากมายที่ระบุปฏิกิริยาคิโมเรื่องเป็นส่วนหนึ่งของกลไกที่ช่วยให้เกิดการเปลี่ยนแปลงโครงสร้างของหนี้เฉลิมและทำให้เกิดปฏิกิริยาในการเปลี่ยนสภาพของสารละลายในสารประกอบที่ไม่สูญไรความชื้นสามารถควบคุมได้โดยใช้ความร้อนเพลคินอาจเกิดปฏิกิริยาการเปลี่ยนสภาพเพลคิโมเรื่องโดยมีการรวมกำลังการเป็นเจลที่มีกิโลมอนิกในกระบวนการปรุงอาหารที่ไม่เกิดเพลคิโมเรื่อง (low methoxy pectin) จะเกิดปฏิกิริยารักษาสภาพเพลคิโมเรื่องเร็วขึ้น

เพลคินที่มีอิสระ (≥4.5) และที่อยู่ในกลุ่มติดอยู่ (≥80°C) ซึ่งเป็นสภาพที่มีปฏิกิริยาที่สามารถควบคุม การปรุงอาหารที่มีความร้อนของเพลคินอาจเกิดปฏิกิริยาออกบางของเพลคิโมเรื่องโดยมีปฏิกิริยาที่มีน้ำใจอย่างสูง ข้อคุณสมบัติของปฏิกิริยา β-elimination คือปฏิกิริยาเกิดปฏิกิริยา inklip > ที่ C-6 ซึ่งเป็นปฏิกิริยาต่อปฏิกิริยาที่เกิดเร็วขึ้น ซึ่งมีผลกระทบต่อหนี้เฉลิมโดยมีปฏิกิริยาเกิดปฏิกิริยาในปฏิกิริยาเกิดปฏิกิริยาที่มีน้ำใจอย่างสูง เมื่อเรียก

เพลคิโมเรื่อง (hydroxy ions) เป็นตัวเริ่ม (initiate) ปฏิกิริยา

เพลคิโมเรื่อง (end-acting) หรือติดพันธุ์ต้านย่อยสลาย
เพลคิโมเรื่อง (exo-acting) และทำงานจากกลุ่มปฏิกิริยาในปฏิกิริยาที่มีน้ำใจอย่างสูง (short oligosaccharides) เนื้อเยื่อซึ่ง ๆ เช่น ปฏิกิริยากลีโคซิเดส (β-galactosidas) เนื้อเยื่อกลีโคซิเดส (exo-galactanases) สำหรับที่ไม่เกิด
ของพวกมันสามารถทำได้โดยอาศัยพืชหรือสารเคมีโดยการ
การขัดจุดต่างๆของ PME ที่มีอยู่ภายใน (endogenous)
หรือภายนอกภายนอก (exogenous) โดยใช้การวิเคราะห์-
เคมี (pretreatment conditions) ตัวอย่างความมีการของ
การหลังมีรายงานในกระดาษที่ผ่านการปรับปรุงโดยใช้
ความร้อน

สำหรับการศึกษาที่มีการทดลองปฏิทินเป็นไม้ภายในมวล
ทางและทางภายนอก อย่างไรก็ดีการเพิ่มความเข้มข้น
ของการที่เปลี่ยนไป (additive) เพิ่มเพิ่มถึงการปฏิทิน
β-elimination และเพิ่มค่าของอัตราการดูดซึมเพิ่ม
ด้วยการเพื่อกำรเพิ่มเติมและระดับการเกิดการเปลี่ยน

มีรายงานบางส่วนที่พบคือผลเพื่อปฏิทินTalk เหล่านี้
กล้าที่ยอมถูกทำให้เป็นกระดาษกลายเป็นของ
ออกของของพวกมันในที่พื้นที่ใด ๆ กับ
การยืดตัวของเนื้อเยื่อที่กู้กระแทกกล้าเป็นเนื้อเยื่อ
การแฉะของการถูกทำให้เป็นกระดาษถึงความแม่น
หนึ่งของการปฏิทินไม่มีประสิทธิภาพ (cell-interactions)
ไม่ต้องการผลลัพธ์ในการกระดาษ ที่จริงแล้ว
เนื้อเยื่อได้ถูกทำการยืดตัวตามที่มีคุณค่าเกี่ยวกับการเกิด
ของเม็ดนี้ มีการศึกษาบางกลุ่มที่ใช้ปฏิทินเกี่ยวกับ
และค่าความมีประสิทธิภาพของเนื้อเยื่อที่กระดาษ
ออกของของพวกมันของพวกมัน แต่การศึกษาไม่ได้
สำหรับกระบวนการวิจัยที่จะถูกทำให้เกิดการตัดแบ่ง
ออกของของพวกมัน (water soluble and water
insoluble) ในเนื้อเยื่อที่ใช้ได้สำหรับการเพิ่ม
การสลายตัวโดยขั้นตอนของเนื้อเยื่อ β-elimination ซึ่งเป็นผล
ให้เกิดการย่อยสลายของพืชหรือไม่มีผลต่อ

เหตุผลที่เกี่ยวข้องกับการปรับปรุงเนื้อสัมผัสของ
ผลิตภัณฑ์อาหารปรุงจากพืช

ความต้องการอาหารปรุงจากพืชที่มีผลต่อ
โลกมีการลดลงของการทำให้เกิดความยั่งยืนในการพัฒนา
เหตุผลในการปรับปรุงเนื้อสัมผัสของผลิตภัณฑ์ที่ผ่าน
การปรุงโดยใช้ความร้อนเพื่อกำรเรียนเส้นทางด้าน
เนื้อสัมผัส และวิธีการให้ค่าความสัมผัสของผลิตภัณฑ์ที่ผ่าน
เฉพาะตัวอย่าง ๆ กับ มีรายละเอียดต่อไปนี้

1. การลดที่ถูกแทนที่

การลดที่ถูกแทนที่ประมาณ 50-70°C เป็นเวลา
โดยทั่วไปประมาณ 30 นาทีการปรุงและการปรุงโดยใช้
ความร้อนสูง (45°C) มีการพบเพื่อปรับปรุงเนื้อสัมผัส
ของผลิตภัณฑ์อาหารปรุงจากพืช ซึ่งเจรจาปฏิทิน
β-elimination เกิดขึ้นกับสภาวะผลิตภัณฑ์ที่มีส่วน
การถูกย่อยได้เป็นผลสัมพันธ์กับความร้อน
และผลการถูกย่อยเนื้อสัมผัสระหว่างกระบวนการให้ความร้อน
การลดที่เกิดปฏิทิน β-elimination ทำได้โดยการกระทำ
การกระจายของเนื้อเยื่อ PME ซึ่งถูกใช้เพื่อการกระจาย
ของเนื้อเยื่อ PME ทำให้เนื้อเยื่อเปลี่ยนขึ้น 50-70°C
ซึ่งเป็นอุณหภูมิที่เหมาะสมกับการกระทำของเนื้อเยื่อ
นอกจากนี้การลดที่ถูกแทนที่ยังเป็นโอกาสในการเกิด
เส้นขวางข้ามระหว่างพืช

การลดที่ถูกแทนที่ยังเป็นการยอมให้น้ำมี.tif
(permeability) ของเนื้อเยื่อเชิงเป็นเพียงส่วนหนึ่ง (plasma membrane) ซึ่ง
การรับการผ่านของแคติออน (cation) ซึ่งจะไปที่กระดูก
การกระทำของ PME อีกต่อหนึ่ง

2. การลด การสูญหรือการซึมผ่านอาหารทำให้เนื้อแน่น

เนื้อที่มาจากการหิวไก่อิ่มสำหรับเนื้อเยื่อ 2 (หิว).
แต่ที่เกี่ยวข้องกับวิธีการซึมผ่านถึงเป็น
ใช้การลดที่เกิดปฏิทิน PME สำหรับการกระทำโดย
แคติออนสำหรับให้ความร้อนและทำให้เนื้อแน่น (firming
agents) เช่น เกลือลดเข้ม (calcium salts) สารโอโต-
คงแลคโตน (gelling hydrocolloids) และเนื้อเยื่อ PME เพื่อ
เพิ่มความแข็งของเนื้อสัมผัสในอาหารปรุงจากพืช

2.1 แคติออน

การใช้แคติออนมีผลต่อการดูดซึมเนื้อสัมผัสของ
เนื้อเยื่อของผลิตภัณฑ์ที่ผ่านการใช้ความร้อน พบว่าโคกผล
ที่มีผลต่อไม่เหมือนกัน เช่น เกลือลดเข้ม (calcium
(Anapeno pepper) และกรด 5 เนื้อที่มีการดูดซึม
สำหรับกระทำตามการเกิดปฏิทินที่มีส่วน
ไปถูกทำให้เป็นผลสัมพันธ์ด้วยความร้อน (demethoxylated

Vol 29, No 4, Oct-Dec 2010 Factors Affecting Textural Changes and Techniques for Techniques for Textural 459
polyuronides) การเชื่อมโยงข้ามระหว่างผู้ควบคุมแป้ง ไม่ปิดให้เป็นเซลล์ตัวอย่างกรด (free carboxyl groups) ของสตีบิวเด็กและเซลล์เจียรจะพาไปสู่การผลักดันการเจ้าตระกูลเมื่อย่อยอาหารว่างๆ อย่างไรก็ตามการไขเคล็ดลับที่ความเข้าสูญน้ำไม่สูงสุดมักไม่เป็นไปตามบรรณานุกรมของผู้ประกอบและส่งเสริมการเกิดปฏิกิริยา β-elimination
t
แต่ละเซลล์สภาพ (calcium lactate) แต่ละเซลล์ตลาด (calcium propionate) และแต่ละเซลล์กอลโคแทด (calcium gluconate) มีประโยชน์ในการปรับปรุงเนื้อสัมผัส เช่นเดียวกับการใช้เซลล์เจียรเมื่อไร (calcium chloride) นอกจากนี้ยังมีประโยชน์ให้กิ่งขาวและกิ่งขาวส่วนปลูกด้วยกลาดและเวลาที่เข่าโดยชีวภาพและระบุว่าเซลล์เจียรที่มีอยู่ในต่างๆ ที่ศักดิ์สิทธิ์ของกลาดแต่ก็มีค่าในการพัฒนาเทคนิคการใช้และสร้างแยกทีเชื้อรา PME ดังนั้นจึงมีการเจ้าตระกูลเมื่อย่อยอาหารว่างในการทำให้มีปฏิกิริยา β-elimination รวมถึงเทคนิคการใช้เวลาอ่อน_comparison (vacuum impregnation technology) จุดประสงค์ของเทคนิคเหล่านี้เพื่อปรับปรุงองค์ประกอบในข้อที่จะพัฒนาอย่างสูงต้องอยู่ภายใต้การควบคุมส่วนผสมของแต่ละเซลล์ก่อนว่าเป็นผลิตภัณฑ์ที่เนื้อสัมผัส (osmotic gradient) ระหว่างตัวอย่างกับสารละลาย การใช้สูญญาณจากลู่การน้ำยาในที่บรรจุภัณฑ์เพื่อให้เข้าใจการทำงานกัน ผลิตภัณฑ์ลูกที่ได้จากลู่นี้ไม่เป็นสารละลายและสารละลายเป็นผลิตภัณฑ์แห้ง (dehydrated product) ซึ่งมีอยู่ในเบาะของการควบคุม (เป็นพืชหรือพืช) และความสามารถของสูญญาณที่ใช้ระหว่าง 5-200 mbar หรือความเข้มข้นของสารละลายที่ใช้สูญญาณ 20-75°Bx

เมื่อเชื่อมโยงที่มีการควบคุมผ่านสารละลายภายใต้ ภาวะสูญญาณ อาจที่จะสูญออกจากรูขนาดเล็ก เชื่อมต่อความต่ำสุดภูมิ (ความต่ำสุดภูมิ) สารละลายทางมุ่งเน้นไปอย่างรวดเร็วและได้การใช้ตามรูขนาดเล็ก (capillary) และโดยการเชื่อมต่อความดัน (pressure gradients) เทคนิค Impregnation ถูกใช้เพื่อปรับปรุงเนื้อสัมผัสและหรือการเสริมขาวสูญน้ำ มีการประสานกันเทคนิคเนื้อสัมผัสการปรับปรุงกับผลไม่ได้การเชื่อมที่แต่ละเซลล์จะต่าง ๆ

2.2 เทคนิคด้าน PME

การควบคุมกิจกรรมของ PME ที่อยู่ภายในนวัตกรรมไม่ให้เกิดขึ้นกับสารประกอบหรือสิ่งมีชีวิต ที่มีการพัฒนาเทคนิคการใช้และทรัพยากร หากมีการใช้และสร้างแยกที่เป็นไปได้ผลิตภัณฑ์ที่มีการยอมให้เชื้อรา (impermeable skin) หรือขาดออกในระดับใด เช่น เชื้อรา ซึ่งนั่นได้ผลิตภัณฑ์ PME จากการใช้เทคนิคเชื้อราได้ผลิตภัณฑ์ที่มีการคิดคำว่า PME ที่ไม่มาจากทรัพยากรและสูตรทรัพยากร (ทำลายและแยกกิจกรรม)

การนำเอาเชื้อจากกลาดออกเข้าไปเพื่อเปลี่ยนลักษณะของเชื้อเพื่อเรียกว่าการซีเคร็ตzyme infusion (enzyme infusion) หรือการเข้าไปทำให้เกิดการกักกันโดย
1) การประหยัดนักกลังในกลังเพื่อปรุงกลัง (passive osmotic diffusion) ซึ่งจำกัดของวิธีการนี้มี 2 ประเภทกิจกรรม ความเป็นสูญญาณของผักชีและแม่น้ำของผลไม้ที่ทำให้เชื้อรา (infusion) ที่มีผลิตภัณฑ์หรือการสูญญาณเข้าไปในโครงสร้างระหว่างเซลล์อย่างไรได้บ้างเช่น 2) การขึ้นฝ่าโดยอาศัยความตั้งต้น (pressure-assisted infusion) สำหรับสารละลายเชื้อเร้น ที่มีได้ผลสำหรับเพื่อเรียกว่าที่ทำให้เกิดการซีเคร็ตzyme ตกต้นได้ผลิตภัณฑ์ที่มีการคิดคำว่า PME ได้ผลิตภัณฑ์ที่มีการคิดคำว่า PME ที่ไม่มาจากทรัพยากรและสูตรทรัพยากร (ทำลายและแยกกิจกรรม)
ภายในการความมาก ภายใต้สูญญากาศขณะที่ตัวอย่างเบื้องต้นกล้าลิ่วอยู่ในสูญญากาศที่ถูกตีกับแก้ว เพื่อป้องกันไม่เกิดอุณหภูมิ ซึ่งอาจส่งผลต่อความดันที่จำเป็นอยู่ในการระบุด้วย การใช้ PME จากสุนัขหรือแมวตามวัตถุ หรือเฉพาะพืชเมื่อใช้สำหรับการปรุง เพื่อเป็นสินค้าอาหาร นอกจากนี้ยังมีปัญหาในการดื้อย่นและอื่น ๆ เนื่องจาก P PME ซึ่งแตกต่างจากกล้าลิ่วใน PME จากสุนัข

ตาราง 1 และ 2 แสดงถึงการหาประสิทธิภาพระดับที่ช่วยปรุงบริสุทธิ์สินค้าของผลิตภัณฑ์พิกและผลไม้ที่มี การปรุงในเอกสารการรับรู้

ทวิตโค้ดของสารทร็อกส์ (gelling agents) ใน อาหารที่มาจากสุนัขซึ่งปรุงปรุงเนื่องดีเลิศโดยการปรุง ผสมที่เหมาะสมและสูญญากาศในปรุงผลและสูญญากาศโดยการปรุงที่ดีในการออกแบบการปรุงผลไม้ ยังไม่ได้รับความสนใจ ที่ใช้ในการปรุงผลไม้สามารถปรุงปรุงเนื่องดีเลิศได้โดยการปรุงผลไม้ สูญญากาศที่มีความดีในการปรุงผลไม้เนื่องดีเลิศ สามารถใช้ในการปรุงผลไม้เนื่องดีเลิศได้

3. การไขว้ความดันสูงก่อนการปรุง

เทคนิคใหม่ที่คิดค้นเพื่อให้ผลผลิตจากสุนัขให้มี คุณภาพดีขึ้นได้แก่การปรุงโดยใช้ความดันสูง (high-pressure, HP) การใช้ความร้อนสูงซึ่งขัดแย้งกับการที่ รับรองคุณภาพเนื่องดีเลิศในการปรุง โดยการ ทำการปรุงผลไม้ที่มีความดีในการปรุงให้นำเสีย เพื่อ HP เพื่อการทำความสะอาดและ PPM ยังมีมั่นคงที่สูญ ไข่ไข่ความดันสูงในที่เหมาะสม

ตัวอย่างเช่นการรับวิธีการปรุงแกนผลไม้ เนื่องดีเลิศ PPM ถูกป้องกันย้อมที่ดีที่สุดดีเลิศตัวอย่างหนึ่ง เนื่องดีเลิศ PPM ที่มีความดีในการปรุงผลไม้ PPM ถูกป้องกันย้อมที่ดีที่สุดดีเลิศตัวอย่างหนึ่_one

4. การคัดเลือกทางพันธุกรรมของโครงสร้างผลไม้

ปัจจุบันการคัดเลือกทางพันธุกรรมของผลไม้หรือ ผลไม้ที่มีกลุ่มพันธุกรรมการคัดเลือกเบาะหนึ่งในผลไม้ที่มี ผลไม้ที่มีกลุ่มพันธุกรรมการคัดเลือกเบาะหนึ่ิง
<table>
<thead>
<tr>
<th>Sample</th>
<th>Impregnation solutions</th>
<th>Process and conditions</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple pieces (Granny Smith)(^{18})</td>
<td>0.6% CaCl(_2)</td>
<td>55(^\circ)C 15 min</td>
<td>Maintaining the crispness of the vegetable when stored at 4(^\circ)C for 12 days</td>
</tr>
<tr>
<td>Fresh-cut Iceburg lettuce(^{19})</td>
<td>15 g/L calcium lactate</td>
<td>50(^\circ)C 1 min</td>
<td></td>
</tr>
<tr>
<td>Fresh-cut Amarillo melon(^{20})</td>
<td>0.5% CaCl(_2) or calcium lactate or calcium propionate</td>
<td>60(^\circ)C 1 min</td>
<td>Increasing calcium content growth when stored at 5(^\circ)C for 8 days without bitter taste</td>
</tr>
<tr>
<td>Fresh-cut cantaloupe(^{21})</td>
<td>2.5% CaCl(_2)</td>
<td>60(^\circ)C 1 min</td>
<td>Increasing calcium content in the tissue. No effect of soaking time on firmness after storage at 5(^\circ)C for 12 days. Reducing CO(_2) production during storage</td>
</tr>
<tr>
<td>Kiwifruit slices(^{22})</td>
<td>1.2 or 3% CaCl(_2)</td>
<td></td>
<td>Immersing whole kiwi fruits at 45(^\circ)C 25 min in either calcium solution or in distill water showed no difference</td>
</tr>
<tr>
<td>Ready-to-eat carrots(^{23})</td>
<td>15g/L calcium lactate</td>
<td>50(^\circ)C</td>
<td>Stored at 4(^\circ)C 10 days</td>
</tr>
<tr>
<td>Jalapeno pepper rings(^{24})</td>
<td>CaCl(_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diced and frozen red pepper (Capsicum annum var. Sendt)(^{25})</td>
<td>10-25 mM CaCl(_2), Peppers to Impregnation solutions ratio: 1.6:1 30-60 pectinesterase units (PEU) per kg of red peppers</td>
<td>15-20(^\circ)C 45 min</td>
<td></td>
</tr>
<tr>
<td>Sliced pear (partially ripe pears) and strawberry fruits (cvs. 'Pajaro' and 'G-3')(^{26})</td>
<td>1% CaCl(_2)</td>
<td></td>
<td>Stored at 2.5(^\circ)C for 7 days then at 20(^\circ)C for 1 day</td>
</tr>
<tr>
<td>Canned grapefruit sections(^{27})</td>
<td>0.3-0.4% calcium lactate solution or 0.5% calcium lactate in syrup</td>
<td></td>
<td>Firmness increased 38% when soaking in fruit juice and increased 50% when soaking in syrup</td>
</tr>
<tr>
<td>Freshly cut honeydew chunks(^{28})</td>
<td>1.9 mM hypochlorous acid (ClO(_2)) + a 40 mM calcium propionate, calcium amino acid chelate formulation (Ca chelate) or CaCl(_2)</td>
<td>30 sec</td>
<td>Calcium content increased twice and reduced textural loss of melon flesh when stored at 10(^\circ)C for 7 days</td>
</tr>
</tbody>
</table>

\(^{18}\) = Reference 18; \(^{19}\) = Reference 19; \(^{20}\) = Reference 20; \(^{21}\) = Reference 21; \(^{22}\) = Reference 22; \(^{23}\) = Reference 23; \(^{24}\) = Reference 24; \(^{25}\) = Reference 25; \(^{26}\) = Reference 26; \(^{27}\) = Reference 27; \(^{28}\) = Reference 28
<table>
<thead>
<tr>
<th>Sample</th>
<th>Impregnation solutions</th>
<th>Process and conditions</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clingstone non-melting peach fruits (Prunus persica L. Batsch, cv. ‘Androssa’)<sup>30</sup></td>
<td>calcium chloride, calcium lactate, calcium propionate, 62.5 mM CaCl<sub>2</sub></td>
<td>5 min</td>
<td>Stored at 5°C, 95% R.H. Calcium content in the peels increased 2.7 times and increased 74% in the flesh one day after soaking</td>
</tr>
<tr>
<td>Spanish strawberries (Fragaria Ananassa cv. Tudla)<sup>30</sup></td>
<td>1% CaCl<sub>2</sub></td>
<td>45°C with a increase in calcium content after storage at 1°C for 1 day and 18°C for 1 day</td>
<td>Firmness improved after treated tomato underwent heating at 100°C</td>
</tr>
<tr>
<td>Half-inch diced tomato pericarp<sup>31</sup></td>
<td>0.5% CaCl<sub>2</sub></td>
<td>70°C 5 min</td>
<td></td>
</tr>
<tr>
<td>Bok choy<sup>32</sup></td>
<td>water</td>
<td>65°C 45 min</td>
<td>size: 0.6 cm. x 2.5–3.75 cm</td>
</tr>
<tr>
<td>Chinese cabbage<sup>32</sup></td>
<td>water</td>
<td>55°C 45 min</td>
<td>size: 0.6 cm. x 2.5–3.75 cm</td>
</tr>
<tr>
<td>Cabbage<sup>32</sup></td>
<td>water</td>
<td>65°C 15 min</td>
<td>size: 0.6 cm. x 2.5–3.75 cm</td>
</tr>
<tr>
<td>Green bell peppers<sup>32</sup></td>
<td>water</td>
<td>70°C 15 min</td>
<td>size: 1 cm. x 2.5–3.75 cm</td>
</tr>
<tr>
<td>Sugar snap peas<sup>32</sup></td>
<td>water</td>
<td>65°C 30 min</td>
<td>size: 0.6 cm. x 2.5–3.75 cm</td>
</tr>
<tr>
<td>Carrots<sup>32</sup></td>
<td>water</td>
<td>60°C 15 min</td>
<td>size: 0.6 cm. x 2.5–3.75 cm</td>
</tr>
<tr>
<td>Broccoli<sup>32</sup></td>
<td>water</td>
<td>60°C 15 min</td>
<td>size: 0.6 cm. x 2.5–3.75 cm</td>
</tr>
<tr>
<td>Frozen carrots<sup>33</sup></td>
<td>water</td>
<td>60°C 30 min or 70°C 5 min</td>
<td></td>
</tr>
<tr>
<td>Canned carrot<sup>34</sup></td>
<td>water</td>
<td>170°F 20-30 min</td>
<td></td>
</tr>
<tr>
<td>Rehydrated dried bell peppers<sup>35</sup></td>
<td>step 1: blanch in 4% CaCl<sub>2</sub>, step 2: wait 16 min, step 3: blanch in 2% CaCl<sub>2</sub></td>
<td>step 1: 65°C 3 min, step 3: 95°C</td>
<td></td>
</tr>
<tr>
<td>Pasteurized Jalapeno Pepper Rings<sup>36</sup></td>
<td>8% NaCl and 0.2% CaCl<sub>2</sub></td>
<td>60 min 50°C</td>
<td></td>
</tr>
<tr>
<td>Canned green bean<sup>37</sup></td>
<td>water</td>
<td>preheat at 60°C 45 min then blanched at 90°C 4 min followed by sterilization at 118°C 30 min in 0.25 M NaCl</td>
<td></td>
</tr>
<tr>
<td>Snap bean pods<sup>38</sup></td>
<td>water</td>
<td>70°C 20 min, step 2: Cooking in boiling water for 15 min</td>
<td></td>
</tr>
<tr>
<td>Apple<sup>38</sup></td>
<td>Syrup 62 °Brix containing 500-2000 ppm CaCl<sub>2</sub></td>
<td>0.5–8 hrs. at room temperature</td>
<td>size: cylinder with 1.1 cm. diameter and 1 cm long</td>
</tr>
<tr>
<td>Sample</td>
<td>Impregnation solutions</td>
<td>Process and conditions</td>
<td>Remark</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Canned Majestic peaches (Prunus persica)⁴⁴</td>
<td>PME solution from Marsh grapefruit containing 100 mg/L CaCl₂</td>
<td>vacuum infiltration for 1 hr</td>
<td>Calcium content increased from 278 to 432 mg/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specific activity of PME in peach halves increased 20 times</td>
</tr>
<tr>
<td>Overripe ‘Cardinal’ strawberry fruit⁴⁴</td>
<td>Ca lactate 1 or 2%</td>
<td>vacuum infiltration</td>
<td>More effective for fruits undergoing heat treatment than frozen and thaw fruits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slowed down ripening at 20°C and extended shelf-life for 30% but left scars on the skin</td>
</tr>
<tr>
<td>Unripe peaches⁴⁴</td>
<td>1% calcium</td>
<td>vacuum infiltration at 21 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golden delicious apples⁴⁵</td>
<td>4 6 or 8% CaCl₂</td>
<td>pressure-infiltrated at 68.95 kPa</td>
<td>Maintained firmness and reduced qualities loss for 50% during storage at 0°C in low O₂ atmosphere (1%) for 6 months</td>
</tr>
<tr>
<td>Granny Smith (France) apples⁴⁴</td>
<td>PME solution 27Ug/l for 15 min at room temperature of 1 hr at 40°C</td>
<td>vacuum 0.05 bar for 2 min then maintained immersed for 5 min at atmospheric pressure</td>
<td>Exogenous enzyme activity was distributed homogeneously after vacuum-impregnation, while the penetration of the enzyme was limited to the superficial zone (< 2 mm depth) after soaking for 1 h.</td>
</tr>
<tr>
<td>Eggplant⁴⁵</td>
<td>isotonic sucrose solutions containing Ca²⁺ lactate</td>
<td>vacuum impregnation: pressure 60 mbar 10 min then at atmosphere for 10 min</td>
<td>size : cylinder with 20 mm diameter and 30 mm long</td>
</tr>
<tr>
<td>Carrot⁴⁵</td>
<td></td>
<td>vacuum impregnation: pressure 60 mbar 10 min then at atmosphere for 10 min</td>
<td>size : cylinder with 8 mm diameter and 10 mm long</td>
</tr>
<tr>
<td>Osmotic dehydrated apple pieces⁴⁴</td>
<td>step 1: 0.6% CaCl₂ step 2: 2% CaCl₂</td>
<td>step 1: 55°C 15 min step 2: vacuum infiltration 9.3 kPa</td>
<td>The highest sugar migration and the best textural qualities</td>
</tr>
<tr>
<td>Melon⁴⁶</td>
<td>sucrose solution (8%, 29%, 50%) containing 1000 ppm dihydrate Ca²⁺ chloride and heptahydrate Zn⁺ sulphate</td>
<td>step 1: at atmospheric pressure for 3, 24, 45 min step 2: vacuum infiltration P=0, 25, 50 cmHg t₁=10 min, t₂=3, 24, 45 min vacuum impregnation: pressure 0, 25, 50 cmHg 10 min then at atmospheric pressure for t₂=3, 24, 45 min</td>
<td>size : cylinder with 2 cm diameter and 2 cm long</td>
</tr>
<tr>
<td>Apple⁴⁷</td>
<td>apple juice (13 °Brix containing 1000-3000 ppm Ca²⁺ ascorbate or 3600-10800 ppm Ca²⁺ chloride</td>
<td>vacuum impregnation: pressure 60 mbar for 10 min then at atmosphere for 10 min</td>
<td>size: 3.3 x 2.1 x 0.6 cm</td>
</tr>
</tbody>
</table>
 이렇게 할 수 있는지에 대해 논의하고자 한다.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Wt. gained (%)</th>
<th>Firmness (kgf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stalks</td>
</tr>
<tr>
<td>Control</td>
<td>5.96±3.75</td>
<td>3.395±0.345</td>
</tr>
<tr>
<td>G10</td>
<td>18.15±2.50</td>
<td>3.977±0.534</td>
</tr>
<tr>
<td>PS30</td>
<td>19.40±5.84</td>
<td>4.415±0.783</td>
</tr>
<tr>
<td>P30</td>
<td>21.20±4.75</td>
<td>4.491±0.668</td>
</tr>
</tbody>
</table>

Means followed by the same letter in the same column are not significantly different according to the Duncan test (p<0.05)
Figure 1 Scanning electron micrographs showing a cross section of stalks of P. Ostreatus grown on substrates non-supplemented (a) supplemented with gypsum (b) pumice sulfate (c) and pumice (d) after thermal treatment. For each sample, the image was the representative image from three different samples randomly collected from at least 10 canned mushrooms. Only mushroom caps with diameter of 7 cm and mushroom stalks with 1 cm thickness were chosen.

In order to investigate the performance of the bioconversion and cultivation of mushrooms, further work is needed to grow the fungi on the substrates with different levels of supplementation of the nutrients. Scanning electron microscope images show the detailed structure of the stalks of the mushrooms. These images are representative of three different samples randomly collected from at least 10 canned mushrooms. Only mushroom caps with diameter of 7 cm and mushroom stalks with 1 cm thickness were chosen.

16. ถิมณฑศ เจียรักษ์. สารและคุณค่าสุขภาพ บทบาทในการปรุงกึ่งเจริญโลกพืช. วารสารเกษตรพระเจ้าแผ่นดิน 2538;13(3): 56-62
17. สิ่งแวดล้อมและวิทยาการสัตว์. ฟักทองแผ่นพื้นสวนฟักทองในประเทศไทย: แนวโน้มการเปลี่ยนแปลงของ การเก็บรักษาผลผลิต. 1951; 2641.

